
Feedback-Driven Side-Channel Analysis for Networked
Applications∗

İsmet Burak Kadron
University of California Santa Barbara

Santa Barbara, CA, USA
kadron@cs.ucsb.edu

Nicolás Rosner
University of California Santa Barbara

Santa Barbara, CA, USA
nrosner@gmail.com

Tevfik Bultan
University of California Santa Barbara

Santa Barbara, CA, USA
bultan@cs.ucsb.edu

ABSTRACT

Information leakage in software systems is a problem of growing
importance. Networked applications can leak sensitive information
even when they use encryption. For example, some characteristics
of network packets, such as their size, timing and direction, are
visible even for encrypted traffic. Patterns in these characteristics
can be leveraged as side channels to extract information about secret
values accessed by the application. In this paper, we present a new
tool called AutoFeed for detecting and quantifying information
leakage due to side channels in networked software applications.
AutoFeed profiles the target system and automatically explores the
input space, explores the space of output features that may leak
information, quantifies the information leakage, and identifies the
top-leaking features.

Given a set of input mutators and a small number of initial
inputs provided by the user, AutoFeed iteratively mutates inputs
and periodically updates its leakage estimations to identify the
features that leak the greatest amount of information about the
secret of interest. AutoFeed uses a feedback loop for incremental
profiling, and a stopping criterion that terminates the analysis
when the leakage estimation for the top-leaking features converges.
AutoFeed also automatically assigns weights to mutators in order to
focus the search of the input space on exploring dimensions that are
relevant to the leakage quantification. Our experimental evaluation
on the benchmarks shows that AutoFeed is effective in detecting
and quantifying information leaks in networked applications.

CCS CONCEPTS

• Security and privacy→ Software and application security;
Web application security.

KEYWORDS

Side-channel analysis, dynamic program analysis, network traffic
analysis, input generation
ACM Reference Format:

İsmet Burak Kadron, Nicolás Rosner, and Tevfik Bultan. 2020. Feedback-
Driven Side-Channel Analysis for Networked Applications. In Proceedings

∗This material is based on research supported by NSF under Grants CCF-1901098 and
CCF-1817242.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISSTA ’20, July 18–22, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8008-9/20/07.
https://doi.org/10.1145/3395363.3397365

of the 29th ACM SIGSOFT International Symposium on Software Testing and
Analysis (ISSTA ’20), July 18–22, 2020, Virtual Event, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3395363.3397365

1 INTRODUCTION

As sensitive information migrates to online services, information
leaks are becoming an urgent threat, and side-channel leaks, where
private information can be extracted by analyzing visible side ef-
fects of computation, are becoming increasingly important. Well-
known side-channel attacks include those based on power con-
sumption [28], electromagnetic radiation [20], cache timing [48],
and CPU-level branch prediction and race conditions, such as the
Spectre [26] and Meltdown [30] attacks.

Although information leaks due to design flaws in hardware
have been studied more extensively [3, 25, 31], software-based side-
channels have also been reported [13, 27, 45, 47]. To prevent dis-
astrous software-based side-channel attacks, we need tools that
can automatically analyze software systems, detect software side
channels, and assess the severity of the information leakage.

Recent work on software side channel detection [4, 8, 11, 32]
focuses on white-box techniques. However, the source code of the
system may not always be available. Even when it is, many systems
do not lend themselves well to white-box analysis. Modern software
systems often comprise multiple components joined by networks:
clients, servers, peers. They may also include distributed storage,
load balancing, microservices, etc. Components are often written
in different programming languages, whereas most white-box tools
target only one language. White-box tools often require significant
manual effort to extract a slice of the system amenable to analysis
and mock the rest. Such slicing is costly, error-prone, and may hide
side channels. For example, a system may contain a timing vulner-
ability due to differences in the response time of one component.
The side channel goes undetected when that component is stubbed
out. This makes a strong case for black-box side-channel analysis
tools that execute the whole system without modifications.

We present AutoFeed, a tool for feedback-driven black-box pro-
filing of software systems that detects and quantifies side-channel
leakage automatically. The user provides some seed inputs for the
target system, and a set of mutators which, given a valid input,
return another one. The user chooses a secret of interest—some
aspect of the input that they consider sensitive, whose leakage they
want to detect and quantify. AutoFeed then repeatedly executes the
target system, generates new inputs, captures network traffic, and
adjusts input generation and system execution strategies based on
the feedback it obtains by analyzing captured traffic.

https://doi.org/10.1145/3395363.3397365
https://doi.org/10.1145/3395363.3397365

ISSTA ’20, July 18–22, 2020, Virtual Event, USA İsmet Burak Kadron, Nicolás Rosner, and Tevfik Bultan

Modern systems use encryption. AutoFeed analyzes side chan-
nels in network traffic—the visible aspects of traffic that eavesdrop-
pers can easily capture despite encryption, such as the size, timing,
and direction of network packets. AutoFeed extracts meaningful
features from these visible characteristics, and uses conditional
entropy to find features that maximize information gain about the
secret of interest. For example, it may find that the time elapsed
between certain packets leaks some amount of information about
the secret. The final output from AutoFeed is an automatically gen-
erated ranking of the top n most-leaking features, sorted by how
much information they each leak about the secret of interest.

There has been prior work on quantifying leakage in network
traces in particular [40, 47] and in program traces in general [14, 15].
However, all of them rely on manually generated input suites and
do not address the problem of the quality of the input suite. Aut-
oFeed automates the manual effort of providing inputs. Instead,
the user writes mutators to explore the input space. An automated
feedback loop progressively generates and runs more inputs and
improves accuracy of leakage estimation. AutoFeed also automates
the assessment of usefulness of different mutators and the stop
criterion that determines when the leakage estimation and the out-
put feature ranking become stable, avoiding diminishing returns
of computational effort. Compared to prior work, AutoFeed en-
hances the degree of automation significantly, reduces the amount
of wasted profiling effort, and improves the reliability of the results.
Our contribution in this paper is to present a feedback-driven, black-
box technique to detect and quantify side channels using mutator-
based input generation, statistical modeling of the observed data,
and a stop criterion to detect convergence of leakage estimation.
AutoFeed runs incrementally, generates more inputs as needed,
caches inputs to avoid repetitions, and stops running when its
iterative leakage quantification stabilizes. In particular we present:

(1) An automated search mechanism to determine crucial hyper-
parameter values dynamically based on feedback, in order to
estimate probability distributions for modeling the observed
data, and a comparative study of techniques to model the ob-
served data using histograms, Gaussian distributions, and kernel
density estimation (KDE).

(2) A mechanism to focus input space exploration on dimensions
that provide more information about the leakage. AutoFeed
lets users model the input space using mutators, and relate
them to different dimensions of the input space. AutoFeed auto-
matically explores each dimension and assigns weights to the
mutators. The effort invested in exploring each dimension is
proportional to how much each dimension fosters changes in
leakage estimation.

(3) An automated stop criterion that halts the input generation
process once the leakage estimate stabilizes. This allows conver-
gence of the leakage estimation to a value close to the ground
truth independent of the starting input set.

(4) Experimental evaluation of the effectiveness of AutoFeed on
handcrafted examples with known quantitative ground truths
and on the DARPA Space/Time Analysis for Cybersecurity
(STAC) benchmark [17], which consists of realistic-sized soft-
ware systems (Web, client-server, and peer-to-peer) developed
by DARPA, in both controlled, low latency and less controlled,

high latency network conditions in order to evaluate side-channel
vulnerability detection techniques.

The rest of the paper is organized as follows. In Section 2 we
provide motivation and an overview of our approach. In Section 3
we describe the core techniques and heuristics we developed for
AutoFeed. In Section 4 we describe our implementation. In Section 5
we present an experimental evaluation of AutoFeed. In Section 6
we discuss the related work. In Section 7 we conclude the paper.

2 MOTIVATION AND OVERVIEW

Generating a set of profiling inputs to quantify information leakage
presents unique challenges. The problem is quite different from
generating an input suite for testing. In traditional testing, the
goal is to find inputs that violate assertions or crash the system. In
side-channel profiling, the goal is to characterize the relationship
between a certain secret (i.e., some private or sensitive variable)
and the publicly observable output of the system, such as the timing
and sizes of encrypted network packets. Many new issues arise. We
do not know how inputs and outputs are related. We do not know
how outputs and secrets are related. Each observable feature may
reveal very little or very much about a secret. For each secret, there
is an immense space of output features that could leak information
about it—the timing of a particular network packet, the time elapsed
between two packets, the size of a packet, the sum of sizes of a
subset of the packets, etc. Given an observable output feature, it is
hard to figure out how its value relates to the value of the secret.

Challenge: Foster collisions. Suppose a secret is picked. Given
a set of inputs, each with a different value of the secret, suppose
we run each input through the target system. If the set is small, we
will find some feature (say, the time of a certain network packet)
that takes a unique value for each secret value. Based on such
observations, one might be misled into concluding that the feature
fully leaks the value of the secret. But the actual leakage could be
much lower, or even none, because: (1) If we generate more inputs,
we may observe the same value of the feature for two inputs with
different secrets. We call these collisions. (2) If we run the same input
twice, due to system noise, we may see different feature values for
the exact same input. These two phenomena, collisions and noise,
create complex relationships between secrets and features.

It is desirable to find inputs that foster collisions between secrets
in each of the system’s observable output features. Imagine that
we probe a medical system to see how much information it leaks
about a patient’s age when a patient’s record is accessed by medical
staff through the network. If we profile the system with a small
sample (e.g., fetch 10 patient records), we may observe that the size
of a certain packet changes with the age of the patient. But the
size of the packet could have taken a unique value for each of the
10 executions by coincidence. A collision occurs when we fetch
the records of two patients with different ages (say, 18 and 57) for
which that packet has the same size (say, 215 bytes). This introduces
uncertainty: an eavesdropper that captures an interaction with a
215-byte packet cannot tell if the patient is 18 or 57 years old. Thus,
the feature does not fully leak the secret. As we fetch more records,
if the observed collision rate progressively approaches the actual
rate, our quantification of information leakage will progressively
approach the actual amount of information leaked. An input set

Feedback-Driven Side-Channel Analysis for Networked Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

with an overly low collision rate (w.r.t. the full input space) will
result in overestimating the leakage. Finding inputs that foster
collisions in the most-leaking features improves the estimation.

Now consider time features, such as the time elapsed between the
third and fourth packets of each interaction. We want to quantify
how much information this feature leaks about patient age. Since
time is continuous, the probability of seeing the exact same value
for two inputs is zero. Even if we run the exact same input multiple
times, we will see slightly different values. This is due to system
noise, such as variance in network latency. By running each input
multiple times, we can model the noise as a probability distribution.
Collisions occurwhen distributions overlap. The greater the overlap,
the more uncertainty about the secret value, resulting in a lower
estimation of the amount of information leaked.

Note that the relationships between inputs, outputs and secrets
are arbitrary: they depend on the behavior of the target system.
The same is true of noise, and software pseudo-randomness can
add arbitrary extra noise. Hence, there are no general rules to build
an adequate black-box input suite before the analysis. Statically
crafted input suites can always lead to incorrect results.

Challenge: Explore a vast input space. To compute the exact
amount of information leaked by a system about a secret when
performing an action, we would need to execute the action for
every input, which is generally not feasible. How many inputs we
are willing to execute depends on how long it takes to run each one
and how long we are willing to wait for the analysis to complete.

System inputs can be complex and may include structured data.
For example, the Airplan system from the DARPA STAC bench-
mark (see Section 5.2) takes as input an arbitrary graph of airports
and flight routes, and each edge is decorated with six different
weights. Inputs to DARPA’s Railyard system involve different
kinds of train cars, different types and quantities of cargo, crew
members, train routes, stops, schedules, and more. The possibilities
are endless and depend on the system. Each output feature can be
affected by any part of the input—including those that are related
to the secret of interest, and those that are not.

Prior work [14, 15, 40, 47] requires the user to provide the full
input suite before the analysis begins. Thus, the user must sample the
input space in some way that covers all its dimensions adequately.
But, even for one feature, the user cannot know in advance which
input dimensions will foster changes in the leakage estimation of
that feature. To make things worse, there is an enormous space of
observable features. If the user tries to be conservative and cover all
bases, combinatorial explosion results in a prohibitive number of
inputs. If the user tries to reduce the input set to keep the analysis
time feasible, leakage estimation results may be incorrect.

Challenge: Quantify the leakage. Extracting probability dis-
tributions from observable features is nontrivial. Histograms can
overfit the data and lead to false positives. Gaussian fitting can over-
abstract the data: if it is not normally distributed, the model will
be wrong. For example, when a feature is multi-modal, Gaussian
fitting will produce a unimodal approximation, and false overlaps
will underestimate the leakage. Kernel density estimation [34] of-
fers greater flexibility and is well-suited for a wide variety of data,
but heavily depends on the window size or bandwidth; too small
a value leads to similar problems as with histograms, whereas too
large a value can lead to similar problems as with Gaussian fitting.

Overview of our approach. As said above, crafting an input
suite before the analysis is tedious and risky. Different input suites
can lead to different leakage quantification results. AutoFeed offers
a mutation-based mechanism (see 4) to specify the space of valid
inputs. It automatically generates new inputs on demand using a
feedback loop. Manual user effort is limited to writing the mutators,
providing a small set of initial seeds, and choosing the secret of in-
terest. (The mutators, once written, can be reused for many secrets.)
AutoFeed automates everything else. It iteratively mutates inputs
and periodically quantifies the leakage to update its belief about
which features leak the greatest amount of information about that
secret. In doing so, it automates both the exploration of the output
feature space and the exploration of the input space. Since the user
cannot know which mutators will be most important for a secret,
AutoFeed measures the effect of different mutators on leakage esti-
mation, and weighs them accordingly (see 3.3) in a feedback-driven
way. By focusing the computational effort on those mutators that
have greater effect on the leakage estimation of the most promising
features, the input space is explored efficiently.

Quantification computation is nontrivial. We conducted a com-
parative analysis of different approaches (see 5.4). AutoFeed auto-
matically discovers the distribution of observed data using KDE
and automatically finds a suitable bandwidth parameter (see 3.4).

By enforcing a stop criterion, AutoFeed automates evaluating
whether the leakage estimation is stable enough (see 3.5). This
reduces the risks associated with having to manually decide when
to stop. It also allows AutoFeed to run analyses batches unattended.

3 FEEDBACK-DRIVEN SIDE-CHANNEL

ANALYSIS

In this section we provide some basic definitions and explain the
main algorithms and heuristics used in AutoFeed.

3.1 System Model

Assume that a software system, use case, and secret of interest are
selected by the user. We reuse the following definitions from the
systemmodel in [40]. The input domain I is the set of all valid inputs
for the use case. The secret domain S is the set of all values that
the secret of interest can take. Given an input, the secret function
ζ : I −→ S projects its secret value. Running every input in I is
usually not feasible: the input set I ⊆ I is the set of distinct inputs
that are executed during an analysis. Since the secret is a function
of the input, by choosing a set of inputs, we are also choosing a
set of secrets. The secret set S ⊆ S is the set of distinct secrets that
appear in some input during an AutoFeed analysis. Assuming a
generalized ζ : P(I) −→ P(S), we can say that ζ (I) = S. A packet
is an abstraction of a real network packet. We assume packets are
encrypted. Decrypting them is beyond the scope of this work. We
consider side-channel characteristics of each packet: its size, time,
and direction in which it flows. Each time we execute an input
i ∈ I through the system, we capture a network trace, which is a
sequence of packets. We also add the following definitions. A seed
is an input i ∈ I provided by the user. A mutator is a function
m : I −→ I∪{None} that, given a valid input, returns another valid
input, or None if the input cannot be mutated bym. For instance,
in our Airplan example, the RemoveFlight mutator removes one

ISSTA ’20, July 18–22, 2020, Virtual Event, USA İsmet Burak Kadron, Nicolás Rosner, and Tevfik Bultan

of the direct flights between two airports. This mutator cannot be
applied to a map in which all direct flights have been removed.
Lastly, an initial set of inputs D ⊆ I is a set of inputs obtained by
applying some amount of random mutation to the seeds.

Procedure 1 AutoFeed(App, I ,M , RPI ,C) Given an application App, an initial
set of inputs I , a set of mutatorsM , a repetition per input value RPI , and a time budget
per iteration C , AutoFeed quantifies the leakage using a feedback loop.

1: Traces←Execute(App, I , RPI)
2: N ← C/(AvgTime(Traces) × RPI) ▷ Calculate the number of inputs (N) to

generate per iteration, given C seconds of time budget per iteration
3: I ′ ←Mutate(I ,M , N , ®Wuniform) ▷ Generate new inputs using mutators where

each partition of mutators has equal weight
4: Traces′ ←Execute(App, I ′, RPI) ▷ Generate corresponding traces
5: I ← I ∪ I ′
6: Traces← Traces ∪ Traces′
7: Leak′ ←QuantifyLeakage(Traces)
8: ⟨ ®W ⟩ ← GetWeights(App, I ,M , N) ▷ Compute the weights for the mutators
9: repeat ▷ Main loop for feedback-driven exploration
10: Leak ← Leak′

11: I ′ ←Mutate(I ,M , N , ®W) ▷ Generate new inputs using mutators
12: Traces′ ← Execute(App, I ′, RPI) ▷ Generate corresponding traces
13: I ← I ∪ I ′
14: Traces← Traces ∪ Traces′
15: Leak′ ←QuantifyLeakage(Traces)
16: until |Leak′ − Leak | < ϵ ▷ Stop criterion check convergence of leakage value
17: return Leak′

Procedure 2 GetWeights(App, I ,M , N) Given an application App, a set of
inputs I , a set of mutators M and a partition, and number of inputs to generate N ,
GetWeights computes weights for subsets of mutators.

1: Traces← Execute(App, I , RPI) ▷ Generate corresponding traces
2: F ← ExtractFeatures(Traces) ▷ Extract features over traces of original inputs
3: for each subset Mi of M do ▷ where the Mi are a partition of M
4: Ii ←Mutate(I ,Mi , N) ▷ Generate inputs using a subset of mutators
5: Traces′ ← Execute(App, Ii , RPI)
6: F ′ ← ExtractFeatures(Traces′) ▷ Extract features over traces of mutated

inputs to estimate weight of Mi

7: ®W [i] ←
∑
j | F ′j − Fj |/(Fmax − Fmin) + [Sec ′j , Sec j] ▷ Weight of the

current subset of mutators is proportional to number of mutated inputs with a
different feature value or secret

8: Wsum ←
∑
iW [i]

9: for each ®W [i] do ▷ Normalize the mutator weights
10: ®W [i] ← ®W [i]/Wsum

11: return ⟨ ®W ⟩

Procedure 3 Mutate(I ,M , N , ®W) Given a set of inputs I , a set of mutatorsM ,
number of inputs to generate N , and mutator weights ®W , Mutate generates new
unique inputs using the mutators.

1: Inew ← ∅
2: while |Inew | < N ∧ |I | > 0 do
3: i ← RandomSelect(I) ▷ Select a random input
4: M ′ ← M
5: done← false
6: while M ′ , ∅ ∧ ¬done do
7: m ← RandomSelect(M ′, ®W) ▷ From set M ′ according to weights ®W
8: inew ←m(i)
9: if inew ∈ I ∨ inew = None then
10: M ′ ← M ′ − {m } ▷ If a mutator does not create a new input, drop it
11: else

12: Inew ← Inew ∪ {inew }
13: done← true
14: if ¬done then
15: I ← I − {i } ▷ If no mutator yields a new input, drop it
16: return Inew

3.2 AutoFeed Workflow

The high level algorithm demonstrating the workflow of the Aut-
oFeed tool is shown in Procedure 1. AutoFeed requires the following
inputs from the user: an application to run App, initial seed inputs
I , a set of mutators M , value for repetitions per input RPI , and a
time budget per iteration C . First, AutoFeed executes the App with
the initial seed inputs to generate an initial set of traces. Based on
these initial traces, it calculates the number of inputs to generate
per iteration (N) that corresponds to the given input time budget
per iteration (C). Then, it applies the mutators on the seed inputs
to get new inputs, executes the App on these inputs, and uses the
traces obtained from these executions to obtain an initial estima-
tion of the information leakage. Using the initial leakage results,
AutoFeed uses heuristics to compute weights for mutators, where
the weight of each mutator corresponds to the likelihood of apply-
ing that mutator during input generation. After these initialization
steps, AutoFeed starts executing its main loop for feedback-driven
exploration of the input state space for obtaining an accurate es-
timation of information leakage. In each loop iteration, AutoFeed
uses mutators to generate new inputs, executes the App on new
inputs to generate corresponding traces, and updates the leakage
estimation using all the traces captured so far. When the change
in the leakage estimate falls below a small value (ϵ), AutoFeed
terminates execution and reports the computed leakage.

In the main workflow of the AutoFeed tool shown in Procedure 1
we use two other procedures that we discuss below: GetWeights,
and Mutate. For the sake of readability and clarity of presentation,
we present all these procedures from the perspective of a single
feature (the top feature) corresponding to the feature that leaks the
most amount of information. In actual implementation of AutoFeed,
a large set of features are taken into account and their leakage is
estimated until termination. After the initial input generation step
and initial leakage estimation, only for GetWeights top k features
are selected as we believe mutators that discover more behaviors
on those features will impact the leakage results.

3.3 Assigning Weights to Subsets of Mutators

AutoFeed uses the user-provided mutators to generate new inputs
and explore the input space. It is not possible to know in advance
which mutators would be more effective in exploration of the in-
formation leakage. Some mutators may generate new secret values
which may help our analysis by improving the information leak-
age estimation. Some mutators may generate inputs with the same
secret value but different feature values which can again help our
analysis by improving the information leakage estimation. On the
other hand, some mutators may generate inputs that do not pro-
vide any new insight to the relationship between the secret and
the observable features. For example, some mutators may change
the input without modifying the secret or any of the observable
features. Such mutators will not help our analysis in improving the
information leakage estimation. AutoFeed evaluates the influence
of mutators on the leakage estimation based on changes in top
feature or secret and computes weights for mutators which are pro-
portional to their likelihood of changing secret value or perturbing
feature values. These weights are then used to bias the random
selection of the mutators where each mutator is selected with a

Feedback-Driven Side-Channel Analysis for Networked Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

probability that is proportional to its weight. Hence, the mutators
that influence the leakage estimation less are chosen less frequently
and the mutators that influence the leakage estimation significantly
are chosen more frequently.

To do this analysis, the user groups the mutators into subsets. We
call these subsets of mutators dimensions. Mutators can be grouped
by the attribute they are modifying. For instance, in the Railyard
system, mutators that add/remove stops from the train schedule are
one dimension, whereas those that add/remove personnel from the
train crew are another dimension. Mutators can also be grouped
by the magnitude of the change that they cause on the input: if a
mutator increases an input field by 1, and another mutator increases
it by 1000, we may want them to be weighted separately.

We assume that the user provides a partition of the set of muta-
tors, so that each mutator belongs to a single dimension, and each
dimension is a subset of the set of mutators. To assess the impact of
each subset of mutators on the leakage estimation, for each subset,
we generate and run inputs generated only using mutators in that
particular subset. Using the traces of these runs and previous traces,
we quantify the leakage and record the amount of change in the
leakage between this step and the previous step. After we do this
test for each subset of mutators, we weigh each subset proportion-
ally to the amount of change in leakage we recorded for that subset
of mutators. Psuedocode for this process is given in Procedure 2.

3.4 Leakage Quantification

This section describes howQuantifyLeakage function in Proce-
dure 1 works. To quantify information leakage, we start from a set
of captured traces, each one labeled with the secret value associ-
ated with that trace, and we align packets using markers inserted at
runtime which denote different stages of the interaction. We then
extract the related packet based features (such as packet timing
and size) and aggregated features (such as total duration, total size,
etc.) obtained using alignment. After obtaining the features, we can
estimate the probability distribution of features per secret using
multiple methods and compute the mutual information between the
secret and feature using the estimated probability distribution for
each feature. We use Shannon entropy [43] to calculate the mutual
information I (S;V) and it is derived as

I (S;V) = −
∑
s ∈S

p(s) log2 p(s) −

(
−

∑
v ∈V

p(v)
∑
s ∈S

p(s |v) log2 p(s |v)

)
where S and V are the sets of secret and feature values and we
estimate p(v |s) for each secret, p(s) is assumed to be uniform and
p(s |v) and p(v) are estimated using Bayes’ rule. The first term repre-
sents the initial amount of information about the secret. The second
represents the remaining uncertainty after observing the feature.
The difference is the amount of information gained by observing
that feature. For more details, see [40, 43].

The simplest way of estimating the shape of the data distribution
is by modeling it as a histogram. This method puts the data in
discrete bins where the ratio of elements determine the probability.
One problem with this method is that its results are dependent
on the bin size and determining an ideal bin size is difficult. If we
conservatively choose the smallest bin size we can, then collisions
will go undetected unless a huge number of samples is used.

Another method is modeling the data distribution as a Gaussian
distribution where the mean µ̂ and standard deviation σ̂ of the
data is obtained and p̂(x) is estimated as N (x ; µ̂, σ̂). This method
extrapolates well but is based on the strong assumption that the
data is normally distributed. This assumption may fail if the data
is generated from a more complex distribution. Whenever the as-
sumption fails, the data is underfitted: spurious collisions arise, and
the information leakage tends to be understated.

Another way of estimating probability distributions is using
kernel density estimation (KDE) [34]. Using KDE, we can estimate
the distribution of data without assuming a specific distribution.
Unlike a histogram, our estimation is smooth, which helps us model
continuous data better and extrapolate to unseen data more easily.
If we want to estimate p(x), the kernel density estimator p̂(x) is

p̂(x) =
1
nh

n∑
i=1

K
(x − xi

h

)
wheren is number of samples,h is the positive bandwidth parameter
and K is a non-negative function called kernel. There are various
kernel functions: uniform, triangular, Gaussian, Epanechnikov, etc.
The bandwidth h affects our estimation greatly. If it is too small, it
overfits the data we have; if it is too large, it underfits the data.

In this work, we have used two methods for bandwidth selection.
First selection method is the optimal bandwidth if the underlying
distribution is Gaussian in which bandwidthh = 1.06σ̂n−1/5, where
σ̂ is the standard deviation of the data [44]. Second method is more
general and instead of assuming any underlying distribution, we use
statistical cross-validation techniques to select the ideal bandwidth.
We use grid search which is used for hyper-parameter optimization
by training using a set of candidate parameters on a model (KDE in
this case) and evaluating each trained model. The evaluation metric
is obtained using repeated k-fold cross-validation where the data is
split into k equal subsets and for a single subset, we use the other
k − 1 subsets to train the model by estimating KDE using only the
other subsets. The selected subset is tested to obtain the likelihood
of this subset on the model. If the likelihood is high, that means
KDE with this particular bandwidth does not overfit the data points
and generalizes to unseen data as we test likelihood with a separate
subset from training subsets. This process is repeated for all k
subsets, for multiple splits of the data and the results (likelihood)
are averaged. The model which gets us a higher likelihood on the
test sets is the best performing model as it means it fits the data
well. We select the ideal bandwidth as the bandwidth of the best
performing model [7, 21, 41]. This method has some variance in
bandwidth selection as it depends on the dataset and the particular
splitting but variance can be reduced with the repetitions. [9] We
set k to be 5 in our experiments, with 3 repetitions.

For comparison purposes, we have also included in the exper-
iments a version of KDE in which the bandwidth is fixed. As for
kernel selection, we use Epanechnikov kernel in our implementa-
tion which is optimal in minimizing mean square error. [50]

3.5 Stop Criterion

As AutoFeed’s main loop runs, the leakage estimation can converge
if newly generated inputs no longer discover new behaviors. If the
estimation stops changing, this can mean that the exploration of the

ISSTA ’20, July 18–22, 2020, Virtual Event, USA İsmet Burak Kadron, Nicolás Rosner, and Tevfik Bultan

input space has saturated and we may finish the analysis and print
the leakage estimation ranking. To detect this condition, we check
the change in information leakage of the top leaking feature and
finish the analysis if it is smaller than a predetermined ϵ for a long
enough period of time. Accuracy of leakage estimation depends
on the accuracy of probability estimation p̂(x) and as number of
inputs N increases, accuracy of p̂(x) will also increase.

In Procedure 1 we show the pseudocode for this process. Note
that this pseudocode is a simplified version: in the actual AutoFeed
implementation, we terminate the analysis only if leakage estima-
tion for the top k features converges, and we assume that leakage
estimation converges if it changes less than ϵ for at least n consec-
utive iterations (rather than the last iteration as in Procedure 1),
where k and n are adjustable parameters. To simplify the presenta-
tion, in Procedure 1 we show a version where k = 1 and n = 2, but
the values of k and n are adjustable in our implementation.

Listing 1: Example usage of AutoFeed API

from autofeed import Platform , Container , Sniffer , App , Input , Mutator

class ExampleApp(App):

def launch(self):

Platform.cleanuphosts (["homer.example.edu", "marge.example.edu"])

Deploy two containers on two different machines

self.servercontainer = Container("example/server:v1.0")

self.clientcontainer = Container("example/client:v1.0")

self.server = Platform.launch(self.servercontainer , "homer.example.edu")

self.client = Platform.launch(self.clientcontainer , "marge.example.edu")

Run the server

server_cmd = "bash -c 'cd /home/server && ./ startServer.sh'"

self.server.exec(server_cmd , detach=True)

def shutdown(self):

self.server.killrm ()

self.client.killrm ()

def run(self , inputs):

sniffer = Sniffer(ports =[8080 , 8081])

sniffer.start()

for input in inputs:

sniffer.startinteraction(input.secret ())

self.client.createfile(input , "/home/client/input.txt")

cmdfmt = "bash -c 'cd /home/client && ./ startClient.sh {} {}'"

self.client.exec(cmdfmt.format("homer.example.edu", "input.txt"))

sniffer.stop()

return sniffer.traces ()

class ExampleAppInput(Input):

def __init__(self , num_people , temperature):

assert num_people >= 0

self.num_people = num_people

self.temperature = temperature

def __eq__(self , other):

return self.num_people == other.num_people

and self.temperature == other.temperature

def __hash__(self):

return hash((self.num_people , self.temperature))

class IncreaseNumberOfPeople(Mutator):

def mutate(input):

input.num_people += 1

return input

class DecreaseNumber(Mutator):

def mutate(input):

if input.num_people > 0:

input.num_people -= 1

return input

else: # we do not allow a negative number of people

return None

class IncreaseTemperature(Mutator):

... etc ...

4 IMPLEMENTATION

AutoFeed is written in Python. We use the trace-capturing library
from [40], which relies on scapy [6] for packet sniffing. AutoFeed
uses scikit-learn [36] and numpy [2] for probability estimation and

leakage quantification, matplotlib [23] for plotting, and the Python
docker [1] library for container orchestration. We ran AutoFeed on
the DARPA STAC Reference Platform, which comprises three Intel
NUC computers (see Section 5.3). Users can run AutoFeed on any
number of computers and networks, including localhost. AutoFeed
provides Python base classes, templates, and examples for:

Orchestration.We use Docker [18] for deployment and launch-
ing of components (clients, servers, peers) on different machines.
We provide a Container abstraction to launch containerC on host
H , copy a file F to C , run a command K on C , and shut down C .

System setup and execution. The App class is a base class that
represents a black-box system. Users can subclass App to add their
own systems. An App must provide three things: a launch method
that launches the system; a shutdown method that shuts it down;
and a runmethod to execute inputs. Given a list of Input instances,
the App.run(inputs) method should return a list of traces.

Packet sniffing. AutoFeed provides a Sniffer object that of-
fers a simple interface for capturing traffic and labeling the cap-
tured traces. Before starting each interaction, the App’s runmethod
should call Sniffer.startinteraction(secret) to ensure that
the captured traffic is labeled with the correct secret.

Input model. The Input base class represents a valid input
for an App. Users subclass Input and add members to model rele-
vant characteristics of an input instance. The only two mandatory
methods are eq (equality comparator) and hash. These are used
by AutoFeed to hash previously seen input instances and avoid
unwanted repetitions. When in doubt, a simple way to implement
a reasonable hash method is to pack all relevant class members in
a tuple and call Python’s primitive hash method on that tuple. This
ensures that any change in any member affects the hash code.

Mutators. The Mutator base class represents a mutator that
transforms valid inputs. The only required method is mutate, a
static method that takes an Input and returns another. The method
assumes that the Input is valid and must return another valid one.
If the mutation cannot be applied or makes no sense for that Input,
the method should return None.

Listing 1 shows an example that uses these classes. For space
reasons, the Input subclass only has two members. The AutoFeed
codebase contains examples with varying degrees of complexity,
including apps, inputs, and mutators for the STAC benchmark.

5 EXPERIMENTAL EVALUATION

We first experimentally evaluate AutoFeed using five example func-
tions which have interesting input/output relationships. We also
evaluate AutoFeed using software systems from the DARPA Space/-
Time Analysis for Cybersecurity (STAC) program [16], which are
publicly available [17]. The STAC systems are multi-component
systems (Web, client-server, peer-to-peer) that communicate over
TCP streams encrypted with TLS/SSL, developed by DARPA to
evaluate side-channel vulnerability detection techniques. The ap-
plications in our benchmark are a superset of those used in [40].
We added Railyard because we were interested in modeling its
highly structured input format with the mutator-based approach.

Feedback-Driven Side-Channel Analysis for Networked Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

5.1 Example Functions

We define five example functions which take an input and pro-
duce a single feature in order to evaluate the contributions dis-
cussed in Section 3.3 and 3.4. Examples 1–4 have the input format
(s, x,y,a,b, c,d, e, f ,д,h)where s , the secret value, is between 1–16,
and the other fields are between 1–100. Example 5 takes a list of
strings as input and the secret value is the length of the list limited
to a maximum length of 15. Since the secret has 16 possible values
in all cases, the total amount of information that could possibly be
leaked is log2 16 = 4.00 bits. Code for Examples 1–5 can be seen
in Listing 2. Feature value of Example 1 is distributed uniformly
between 0.5 and 1.0. Since there is no correlation between secret
and feature, this example leaks 0 bits. In Example 2, there’s a bijec-
tion between feature values and secrets. Thus, this example fully
leaks 4.00 bits. Example 3 is multimodal, where the distribution
changes according to value of x . When x is even, there is perfect
correlation between secret and feature values. When x is odd, there
is no correlation. We use Shannon entropy, an average measure of
leakage, and this example leaks 2.00 out of 4.00 bits. Feature of Ex-
ample 4 depends on fields x and y but those fields are not related to
secret, thus this example leaks 0 bits. Feature of Example 5 depends
on both number and length of list elements, thus there are some
collisions. It leaks 2.21 bits of information.

Listing 2: Code for the example functions

def f1(s,x,y,a,b,c,d,e,f,g,h):

return randomfloat (0.5 ,1.0)

def f2(s,x,y,a,b,c,d,e,f,g,h):

return random (1,50)*20 + s

def f3(s,x,y,a,b,c,d,e,f,g,h):

if x%2 == 0: return s*10

else: return y+1000

def f4(s,x,y,a,b,c,d,e,f,g,h):

return x+y

def f5(list1):

return len(str(list1))

5.2 STAC Systems

Airplan (265 classes, 1,483 methods) is the airline system from our
Section 2 example. Users can upload, edit, and analyze flight routes
by metrics like cost, flight time, passenger and crew capacities. Our
secret of interest is the number of airports in a route map uploaded
by a user. Bidpal (251 classes, 2,960 methods) is a peer-to-peer
system where peers buy and sell items via a single-round auction
with secret bids. Users can create auctions, search auctions, and
place bids. The secret of interest is the secret bid placed by a user.
GabFeed (115 classes, 409 methods) is a Web-based forum. Users
can create posts, search existing posts, and engage in chat. Our
secret of interest is the Hamming weight (i.e., number of ones) of
the server’s private key. SnapBuddy (338 classes, 2,561 methods) is
a Web application for image sharing. Users can upload photos from
different locations, share them with their friends, and find out who
is online by geographical proximity. Our secret of interest is the
location of a user (victim). PowerBroker (315 classes, 3,445 meth-
ods) is a peer-to-peer system used by electricity companies to buy
and sell power. Plants with excess power try to sell it, and plants

Table 1: Mutators used (each line is a different dimension).

Airplan

AddAirport, RemoveAirport Add/remove one airport.
AddFlight, RemoveFlight Add/remove one direct flight.
IncrDensity, DecrDensity Increase/decrease flight density by 20%.
IncrWeight, DecrWeight Increase/decrease one weight value by 1.
BoostWeights, DeboostWeights Multiply/divide all weights by 10.

Railyard

AddCar, RemoveCar Add/remove a train car.
AddCargo, RemoveCargo Add/remove a piece of cargo.
AddCrew, RemoveCrew Add/remove one crew member.
AddStop, RemoveStop Add/remove one train stop.
ChangeStops Change all stops with new ones.
ChangeCrew Change all crew with new ones.

GabFeed

AddOne, RemoveOne Add/remove one 1 to the key.
AddFive, RemoveFive Add/remove five 1s to the key.
ShuffleOnes Shuffle the 1s in the key.

TourPlanner

ReplaceOneCity Replace one city with a different one.
ShuffleCities Shuffle the order of the five cities.

Bidpal

IncrBid, DecrBid Increase/decrease bid by $10.

PowerBroker

IncrOffer, DecrOffer Increase/decrease the offer by $10.

SnapBuddy

PickLocation Pick a known location from the list.

that need power try to buy it. The secret of interest is the value
offered by one of the plants (victim). TourPlanner (321 classes,
2,742 methods) is a client-server tour optimizer—a variation of the
traveling salesman problem. Given a list of cities that the user wants
to visit, it computes a tour with optimal travel costs. The secret
of interest is the set of places that the user (victim) wants to visit.
Railyard (28 classes, 60 methods) is a system to manage a train
station. The station manager can build trains by adding different
kinds of cars, different types and quantities of cargo, adding per-
sonnel to the train, and adding stops to the train’s schedule. The
secret of interest is the set of types of cargo that are on the train
when it departs from the station.

5.3 Experimental Setup

We used the DARPA STAC Reference Platform [40], with 3 Intel
NUCs (server, client, and eavesdropper) connected by an Ethernet
switch with low noise (latency: 0.22 ms min, 0.31 ms avg, 0.57 ms
max). As for AutoFeed parameters, we set RPI to 20 for all programs
when looking for timing side channels, and 5 for Airplan 3 and
SnapBuddy as there was non-determinism in their behavior. Time
budget per iteration C is set to 5 minutes. We set the histogram
bin size to 1 for space side channels, and 10−5 for time. For KDE
with fixed bandwidth, we set the bandwidth to 0.1 for space side
channels, and 10−5 for time. For grid search, we search over 10 pa-
rameters from the aforementioned fixed bandwidth for space/time
to the maximum range of the relevant feature. We also include the
standard deviation bandwidth in the search. For mutation weighing,
we assign weights using GetWeights, considering top-5 features.
The mutators for DARPA STAC systems are described in Table 1.
The mutators are manually written to modify the secret and various

ISSTA ’20, July 18–22, 2020, Virtual Event, USA İsmet Burak Kadron, Nicolás Rosner, and Tevfik Bultan

0

1

2

3

4

5000 10000 15000 20000

Histogram Gaussian KDE-Fixed KDE-StdDev
KDE-ParamSearch Ground Truth

0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000

Figure 1: Information leakage results for Examples 1–5 us-

ing Gaussian, Histogram and KDE. X-axis shows number of

data points. Y-axis shows leakage in bits. Ground truth for

the Examples 1–5 are 0 bits, 4.00 bits, 2.00 bits, 0 bits and 2.21

bits respectively.

aspects of the input with the hope that some of the mutators will
affect the observables. The secret of interest for each app in DARPA
STAC systems is determined by DARPA. For the stop criterion, we
set the value of ϵ to a 0.5% difference and checked that, for the top
feature, the leakage estimation stayed within that difference for 3
consecutive iterations.

0

1

2

3

4

5000 10000 15000 20000

With Weighing KDE-PS Without Weighing KDE-PS
Ground Truth

0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000

0

1

2

3

4

5000 10000 15000 20000

Figure 2: Information leakage results for Examples 1–5 with

and without mutator weighing, using KDE-ParamSearch.

X-axis shows number of data points. Y-axis is leakage in bits.

Ground truth for the Examples 1–5 are 0 bits, 4.00 bits, 2.00

bits, 0 bits and 2.21 bits respectively.

We also used two leakage quantification tools, Leakiest [15] and
F-BLEAU [14], for comparison. Leakiest computes mutual infor-
mation between each feature and secret using histogram and KDE
assuming Gaussian distribution for quantification and hypothesis
testing. F-BLEAU computes min-entropy, which provides a lower
bound on Shannon entropy, using a nearest neighbor based ap-
proach on all features.

Feedback-Driven Side-Channel Analysis for Networked Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

5.4 Experimental Results

Leakage method comparison. For the five example functions,
we started with 16 seed inputs and ran 250 iterations, obtaining
100 data points per iteration. Results are shown in Figure 1. In Ex-
ample 1, where observables are continuous and uniform, Gaussian
and KDE with std.dev. bandwidth converge easily. Histogram and
KDE with fixed bandwidth converge very slowly. KDE with param-
eter search converges to the ground truth as fast as Gaussian and
KDE-StdDev. In Example 2, Gaussian and KDE-StdDev wrongly
converge to zero leakage: they assume a Gaussian distribution, but
this feature is multi-modal. Histogram and KDE-Fixed converge
to the correct result right away thanks to small bin size and band-
width parameters. KDE-ParamSearch initially gets the wrong result
but converges to the correct one when enough data is obtained. In
Example 3, because the feature distribution is bimodal, Gaussian
and KDE-StdDev yield incorrect results. Histogram and KDE-Fixed
converge to a value near the actual leakage, but very slowly. KDE-
ParamSearch converges much faster to the correct result, unlike
the other methods. In Examples 4–5, all methods perform similarly.

In all five cases, when an assumption fails, the method yields a
wrong result or takes too long. Using KDE-ParamSearch, our results
do not overfit the data like Histogram or KDE-Fixed, and they do not
underfit like Gaussian and KDE-StdDev. With this approach, we are
able to select the best bandwidth value that maximizes likelihood
of data and we are able to converge to the correct leakage value.

For STAC applications, using a small set of seeds (<75), we are
able to distinguish if a vulnerability is present, mitigated, or absent;
weigh mutators automatically, and stop iterating when the leakage
values for top features stabilize. See Table 2.

For Airplan, Railyard and SnapBuddy, AutoFeed converges
quickly and vulnerable cases are found to leak 100%, whereas in
cases where leakage is mitigated or absent, lower leakage results
are found. For all cases except Railyard, the LKDE−PS result is
greater than the lower bound estimated by F-BLEAU. F-BLEAU
estimates leakage for multi-dimensional feature vectors and it may
have found a correlation between 2 features that AutoFeed is not
able to detect since AutoFeed analyzes each feature separately.

For GabFeed, PowerBroker, Bidpal and TourPlanner, Aut-
oFeed converges in 8 to 20 iterations and the leakage results for
leaky versions have higher leakage than for non-leaky versions.
For PowerBroker, Bidpal and GabFeed cases, especially in non-
leaky cases, Histogram and KDE-Fixed overestimate the leakage.
For PowerBroker 1 and TourPlanner, LKDE−PS is lower than
LGauss and the reason is that candidate bandwidth values have val-
ues greater than standard deviation and in these cases, a bandwidth
value greater than std.dev. was selected as the ideal bandwidth,
resulting in a lower leakage estimation. PowerBroker 4’s results
show LGauss is overestimating the leakage but std.dev. is actually
100 times lower than our fixed bandwidth, resulting in LKDE−Fixed
overfitting on the data but the fixed methods still overestimate the
leakage, reporting 100% leakage on other features.

Comparing Leakiest to KDE-ParamSearch, Leakiest sometimes
underestimates the leakage (SnapBuddy) and it is unable to produce
a result when the number of samples is too low (GabFeed). Leakage
quantification took between 45 minutes and 5.5 hours on almost
all applications and exact runtime per application can be seen on

Table 2. Only TourPlanner takes more than a day to analyze in
total. The reason is size of the secret domain of TourPlanner is
much greater than other applications, at least 6 times more, and the
parameter search is done to estimate p(x |s) for each secret value s
in the secret domain S, making the runtime proportional with size
of the secret domain.

In summary, KDE-ParamSearch, with a stop criterion, converges
to a leakage value between Histogram and Gaussian, in most cases
greater than the lower bound identified by F-BLEAU, and handles
all data distributions automatically.

Mutator weighing comparison. To test the effectiveness of as-
signing weights to mutators, we ran all five examples starting from
the same seed set, once withmutationweighing, once without muta-
tion weighing, and estimated the leakage using KDE-ParamSearch.
The goal is to see if selecting useful mutators gets the leakage results
closer to the ground truth. Results are shown in Figure 2. First four
cases had 62 mutators to change the secret and other variables. The
fifth example has 110 mutators to change the input list: add/remove
elements, shuffle characters, replace words, shuffle list, etc.

For Example 1, leakage difference between two runs is minimal
because the observable value does not depend on the input. For
Examples 2–5, the run with mutation weighing is able to converge
faster because it gives more weight to mutators that change the
parameters like s, x,y that affect the observables.

We ran a similar test on some STAC apps with complex inputs
like Railyard and there is some difference between leakage results
with and without mutator weighing (for top feature, 28% without
weighing, 22% with weighing) but without the ground truth, it
is impossible to evaluate if our approach improved the leakage
estimation on the STAC apps.

Automated input set generation. Results in Figure 1 also
show one of the key advantages. Consider the leakage values com-
puted on Example 2. A tool that relies on manually constructed
input sets cannot differentiate the input set with 10000 inputs from
the one with size 20000. However, the leakage values for these
input sets are very different. Based on its feedback-driven itera-
tive approach, AutoFeed is able to converge to an accurate leakage
estimation automatically starting from the same input set.

Leakage results for different noise levels. To demonstrate
that AutoFeed also produces meaningful results on a noisy network
environment, we simulate the same experiments as if the servers
are on three different locations. We measured the latency of three
servers, one in US West Coast (Google servers, latency: 3.43 ms
avg, 0.08 ms std.dev), one in US East Coast (Wikimedia servers,
latency: 74.64 ms avg, 3.20 ms std.dev), and one in Russia (VK
servers, latency: 220.52 ms avg, 2.38 ms std.dev). We used these
latency values to add Gaussian timing noise to the obtained packets
and simulate a noisy network environment. These simulations only
affect the cases where we look for timing side channels. The results
are in Table 3. We expect the leakages to drop because of extra
collisions created by noisy environments. For all cases, the leakages
drop when compared to the original experiments as we predicted.
Some cases like GabFeed 1 are affected less than others. We believe
this is because there is not much overlap between the distributions
and the separation is greater than the level of noise.

ISSTA ’20, July 18–22, 2020, Virtual Event, USA İsmet Burak Kadron, Nicolás Rosner, and Tevfik Bultan

Table 2: Leakage results using AutoFeed with different probability estimation methods. LGauss and LHist are Gaussian-based

and histogram-based estimations respectively. LLeakiest is Leakiest-based estimation. LKDE−Fix , LKDE−SD , LKDE−PS are using KDE

with a fixed bandwidth, standard deviation based bandwidth and parameter search based bandwidth respectively. L∗F−BLEAU is

min-entropy results using the F-BLEAU tool. Top Feature is the top feature when run with LKDE−PS . Runtime describes total

analysis runtime in minutes.

Programs Type Vulnerability Top Feature-AutoFeed LGauss LHist LLeakiest L∗F−BLEAU LKDE−SD LKDE−Fix LKDE−PS Iter. Runtime
Airplan 2 Space Present Σ Sizes Phase 4 ↓ 100% 100% 99% 90% 100% 100% 100% 3 76 min.
Airplan 5 Space Mitigated Σ Sizes Phase 4 ↓ 89% 94% 74% 82% 88% 93% 89% 4 114 min.
Airplan 3 Space Absent Size Pkt 20 ↓ 46% 33% 21% 20% 45% 35% 47% 6 161 min.
Railyard Space Absent Size Pkt 2 ↕ 22% 27% 21% 27% 20% 22% 22% 12 202 min.
SnapBuddy Space Present Σ Sizes Full Trace ↑ 100% 100% 47% 100% 100% 100% 100% 3 47 min.
GabFeed 1 Time Present ∆ Pkt 12-13 ↕ 99% 100% N/A 60% 100% 100% 98% 8 108 min.
GabFeed 2 Time Absent ∆ Pkt 11-12 ↕ 29% 71% N/A 24% 31% 66% 31% 19 297 min.
GabFeed 5 Time Absent ∆ Pkt 11-12 ↕ 29% 65% N/A 21% 31% 61% 32% 15 240 min.
PowerBroker 1 Time Present ∆ Pkt 9-10 ↑ 43% 100% 42% 53% 45% 100% 39% 20 313 min.
PowerBroker 2 Time Absent ∆ Pkt 43-44 ↕ 11% 32% 3% 18% 10% 24% 15% 18 263 min.
PowerBroker 4 Time Absent ∆ Pkt 28-29 ↕ 22% 9% 9% 32% 26% 9% 25% 16 220 min.
Bidpal 2 Time Present ∆ Pkt 28-29 ↕ 22% 100% 33% 32% 23% 100% 23% 17 217 min.
Bidpal 1 Time Absent ∆ Pkt 35-36 ↕ 2% 39% 3% 15% 3% 35% 14% 10 137 min.
TourPlanner Time Present ∆ Pkt 12-13 ↕ 60% 70% 62% 42% 62% 67% 60% 12 2057 min.

Table 3: Leakage results using LKDE−PS for four different noise conditions.

Programs Type Vulnerability Top Feature-AutoFeed STAC Platform US-West US-East Russia
GabFeed 1 Time Present ∆ Pkt 12-13 ↕ 98% 97% 96% 96%
GabFeed 2 Time Absent ∆ Pkt 11-12 ↕ 31% 29% 9% 8%
GabFeed 5 Time Absent ∆ Pkt 11-12 ↕ 32% 23% 8% 7%
PowerBroker 1 Time Present ∆ Pkt 9-10 ↑ 39% 39% 37% 36%
PowerBroker 2 Time Absent ∆ Pkt 43-44 ↕ 15% 14% 3% 3%
PowerBroker 4 Time Absent ∆ Pkt 28-29 ↕ 25% 20% 9% 8%
Bidpal 2 Time Present ∆ Pkt 28-29 ↕ 23% 23% 22% 23%
Bidpal 1 Time Absent ∆ Pkt 35-36 ↕ 14% 9% 8% 3%
TourPlanner Time Present ∆ Pkt 12-13 ↕ 60% 50% 5% 5%

6 RELATEDWORK

Profit [40] is a black-box tool to detect and quantify side channels in
network traffic. The user must provide the set of inputs to run. This
makes the tool impractical. Different input suites yield different
results, and the tool offers no way to assess their reliability. An
input suite too small or skewed yields incorrect results; an input
suite too large and diverse may entail immense wasted effort, mak-
ing the analysis cost prohibitive. Striking a balance between an
insufficient input suite and a wasteful one is tedious, costly, and
problem-specific. In contrast, AutoFeed automates this process.

Chen et al. [13] study side-channel leaks in Web applications
using a stateful model that relates transitions between system states
to side-channel observables. They show vulnerabilities and look
into mitigation costs. They do not provide a tool or quantify leakage.
Chapman and Evans [10] present a technique for black-box side
channel detection in Web applications by crawling the application
and building an automaton. They associate transitions between
app states with captured network traffic, and build classifiers to
recognize, on future traffic, which transition is likely to have been
triggered. They use the Fisher criterion [19] to quantify information
leakage based on distinguishability of data points. They use simpler
aggregate features, like total size difference or edit distance.

Privacy Oracle [24] finds leaks using differential testing. Like
AutoFeed, it is black-box, and it uses alignment to detect meaning-
ful relationships across network traces. But it assumes that network
traffic is unencrypted. AutoFeed does not rely on such an assump-
tion: it exploits publicly observable side-channel metadata.

AppScanner [47] is a tool for identifying different apps from
encrypted network traces. It is black-box and trains classifiers on
traces which can identify which app is being used. They focus on a
single type of secret, whereas AutoFeed is a more general tool.

F-BLEAU [14] is a black-box side channel detection and quantifi-
cation tool that uses k-nearest neighbors estimation to generalize
the estimation to unseen data, and min-entropy to quantify infor-
mation leakage. Leakiest [15] is a tool for side channel detection
that uses models based on histograms and KDE, with bandwidth
based on std.dev. It provides confidence intervals, but only if there
was enough data, which cannot be known until after the analysis.

None of the aforementioned black-box tools offer automated in-
put generation. As a consequence, none of them can offer adaptive
input generation. AutoFeed provides dynamic, adaptive input gen-
eration, using feedback-driven self-adjustment to reduce wasted
effort and improve the quality of the results obtained.

Of the related work that addresses the problem of software side-
channel detection, a significant portion are white-box techniques
and tools. As mentioned in Section 1, white-box tools require access
to the source code of the target system, and cannot handle systems
written in multiple languages or that involve multiple components.

DifFuzz [32] is a side-channel analysis technique based on dif-
ferential fuzzing. Like AutoFeed, it involves a feedback loop, but it
is white-box. Its evaluation uses manually sliced parts of programs,
where crucial classes or methods relevant to the side channel are
manually isolated and compiled together with the tool as a program.
AutoFeed can analyze unmodified systems, and since it interacts

Feedback-Driven Side-Channel Analysis for Networked Applications ISSTA ’20, July 18–22, 2020, Virtual Event, USA

with them at the network level, it can analyze systems written in
any language or combination thereof. Other key differences are
that AutoFeed handles noise and nondeterminism while DifFuzz as-
sumes determinism and precise measurements, and that AutoFeed
quantifies the amount of information leaked.

CoCoChannel [8] analyzes the control flow graph of the sys-
tem with respect to an execution cost model. Given a secret of
interest, it builds symbolic cost expressions and reduces detect-
ing imbalances to constraint solving. Themis [11] is an end-to-end
static analysis tool for side-channel analysis of Java code based on
Quantitative Cartesian Hoare Logic. Blazer [4] is a static program
analysis tool that can prove the absence of timing side channels
by decomposition. Scanner [12] is a static analysis tool for side-
channel vulnerability detection in PHP-based Web applications. All
of the above are white-box analysis tools that depend on source
code, and suffer from the aforementioned limitations.

Several works use symbolic execution to quantify information
leakage statically [22, 37–39]. They combine symbolic execution
with model counting or quantitative information flow. All of these
are white-box and require source code. Furthermore, their scalabil-
ity is limited by that of symbolic execution. They are also limited
to the analysis of systems written in a single language.

Fuzzing techniques are popular in security testing. Coverage-
guided fuzzing [29, 42, 49] can generate complex, structured inputs.
Many fuzzing engines use mutation. Some frameworks allow for
custommutators [35]. Others combine fuzzing with symbolic execu-
tion [33, 46]. However, coverage-guided fuzzers depend on code in-
strumentation, and thus require source code. Also, fuzzing engines
are generally built toward the goal of breaking the system—that
is, finding inputs that cause crashes or assertion violations, rather
than quantifying leakage. Fuzzing engines also tend to assume that
it is possible to execute the system in milliseconds, while AutoFeed
deals with systems that can take many seconds per input.

Work by Bang et al. [5] performs online synthesis of adaptive
side-channel attacks. It uses another kind of feedback loop. Like
AutoFeed, it profiles the program through the network. However, it
is still a white-box technique due to its need to symbolically execute
the program before running it. Due to its dependency on symbolic
execution, it cannot handle large systems.

7 CONCLUSIONS

We presented AutoFeed, a black-box tool to detect and quantify
side-channel information leakage in networked software systems.
AutoFeed significantly reduces the manual effort required by prior
black-box side-channel analysis approaches by providing a feedback-
driven automated process for input space exploration and informa-
tion leakage estimation. Given a set of input mutators and a small
number of seed inputs, AutoFeed iteratively mutates inputs and
periodically updates its leakage estimations to identify the features
that leak most information about the secret. AutoFeed measures the
effect of different mutator subsets on leakage, and assigns weights
to prioritize mutators that produce more changes in the leakage
estimation. AutoFeed uses kernel density estimation and an au-
tomated search mechanism to determine crucial hyperparameter
values, in order to estimate probability distributions for modeling
the observed data. It uses a stop criterion to detect convergence of

the leakage estimation and terminate the analysis. Our experimen-
tal evaluation on the benchmarks shows that AutoFeed is effective
in automatically detecting and quantifying information leaks.

REFERENCES

[1] [n.d.]. Docker API for Python.
[2] [n.d.]. Numpy: scientific computing with Python.
[3] Onur Acıiçmez. 2007. Yet another microarchitectural attack:: exploiting I-cache.

In Proceedings of the 2007 ACM workshop on Computer security architecture. ACM,
11–18.

[4] Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Ter-
auchi, and ShiyiWei. 2017. Decomposition instead of self-composition for proving
the absence of timing channels. In Proceedings of the 38th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2017, Barcelona,
Spain, June 18-23, 2017. 362–375. https://doi.org/10.1145/3062341.3062378

[5] Lucas Bang, Nicolás Rosner, and Tevfik Bultan. 2018. Online Synthesis of Adaptive
Side-Channel Attacks Based On Noisy Observations. In 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April
24-26, 2018. 307–322. https://doi.org/10.1109/EuroSP.2018.00029

[6] Philippe Biondi. [n.d.]. Scapy: Packet crafting for Python.
[7] Adrian W Bowman. 1984. An alternative method of cross-validation for the

smoothing of density estimates. Biometrika 71, 2 (1984), 353–360.
[8] Tegan Brennan, Seemanta Saha, Tevfik Bultan, and Corina S. Pasareanu. 2018.

Symbolic path cost analysis for side-channel detection. In Proceedings of the 27th
ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
2018, Amsterdam, The Netherlands, July 16-21, 2018. 27–37. https://doi.org/10.
1145/3213846.3213867

[9] Prabir Burman. 1989. A comparative study of ordinary cross-validation, v-fold
cross-validation and the repeated learning-testing methods. Biometrika 76, 3
(1989), 503–514.

[10] Peter Chapman and David Evans. 2011. Automated Black-box Detection of Side-
channel Vulnerabilities in Web Applications. In Proceedings of the 18th ACM
Conference on Computer and Communications Security (Chicago, Illinois, USA)
(CCS ’11). ACM, New York, NY, USA, 263–274. https://doi.org/10.1145/2046707.
2046737

[11] Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel
Vulnerabilities using Quantitative Cartesian Hoare Logic. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017. 875–890. https://doi.org/
10.1145/3133956.3134058

[12] Jia Chen, Oswaldo Olivo, Isil Dillig, and Calvin Lin. 2017. Static Detection
of Asymptotic Resource Side-channel Vulnerabilities in Web Applications. In
Proceedings of the 32Nd IEEE/ACM International Conference on Automated Software
Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE Press, Piscataway,
NJ, USA, 229–239. http://dl.acm.org/citation.cfm?id=3155562.3155595

[13] Shuo Chen, Kehuan Zhang, Rui Wang, and XiaoFeng Wang. 2010. Side-Channel
Leaks in Web Applications: A Reality Today, a Challenge Tomorrow. 2010 IEEE
Symposium on Security and Privacy (SP) 00 (2010), 191–206. https://doi.org/doi.
ieeecomputersociety.org/10.1109/SP.2010.20

[14] Giovanni Cherubin, Konstantinos Chatzikokolakis, and Catuscia Palamidessi.
2019. F-BLEAU: Fast Black-box Leakage Estimation. CoRR abs/1902.01350 (2019).
arXiv:1902.01350 http://arxiv.org/abs/1902.01350

[15] Tom Chothia, Yusuke Kawamoto, and Chris Novakovic. 2013. A Tool for Esti-
mating Information Leakage. In Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings (Lec-
ture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith
(Eds.). Springer, 690–695. https://doi.org/10.1007/978-3-642-39799-8_47

[16] DARPA. 2015. The Space-Time Analysis for Cybersecurity (STAC) program. http:
//www.darpa.mil/program/space-time-analysis-for-cybersecurity

[17] DARPA. 2017. Public release items for the DARPA Space-Time Analysis for Cyber-
security (STAC) program. https://github.com/Apogee-Research/STAC

[18] Inc. Docker. [n.d.]. Docker. https://www.docker.com/
[19] Ronald A Fisher. 1936. The use of multiple measurements in taxonomic problems.

Annals of eugenics 7, 2 (1936), 179–188.
[20] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. 2001. Electromagnetic

Analysis: Concrete Results. In Cryptographic Hardware and Embedded Systems -
CHES 2001, Third International Workshop, Paris, France, May 14-16, 2001, Proceed-
ings. 251–261. https://doi.org/10.1007/3-540-44709-1_21

[21] Peter Hall, JS Marron, and Byeong U Park. 1992. Smoothed cross-validation.
Probability theory and related fields 92, 1 (1992), 1–20.

[22] Xujing Huang and Pasquale Malacaria. 2013. SideAuto: quantitative information
flow for side-channel leakage in web applications. In Proceedings of the 12th
annual ACM Workshop on Privacy in the Electronic Society, WPES 2013, Berlin,
Germany, November 4, 2013. 285–290. https://doi.org/10.1145/2517840.2517869

[23] J. D. Hunter. 2007. Matplotlib: A 2D graphics environment. Computing In Science
& Engineering 9, 3 (2007), 90–95. https://doi.org/10.1109/MCSE.2007.55

https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1109/EuroSP.2018.00029
https://doi.org/10.1145/3213846.3213867
https://doi.org/10.1145/3213846.3213867
https://doi.org/10.1145/2046707.2046737
https://doi.org/10.1145/2046707.2046737
https://doi.org/10.1145/3133956.3134058
https://doi.org/10.1145/3133956.3134058
http://dl.acm.org/citation.cfm?id=3155562.3155595
https://doi.org/doi.ieeecomputersociety.org/10.1109/SP.2010.20
https://doi.org/doi.ieeecomputersociety.org/10.1109/SP.2010.20
https://arxiv.org/abs/1902.01350
http://arxiv.org/abs/1902.01350
https://doi.org/10.1007/978-3-642-39799-8_47
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://github.com/Apogee-Research/STAC
https://www.docker.com/
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1145/2517840.2517869
https://doi.org/10.1109/MCSE.2007.55

ISSTA ’20, July 18–22, 2020, Virtual Event, USA İsmet Burak Kadron, Nicolás Rosner, and Tevfik Bultan

[24] Jaeyeon Jung, Anmol Sheth, Ben Greenstein, David Wetherall, Gabriel Maganis,
and Tadayoshi Kohno. 2008. Privacy Oracle: A System for Finding Application
Leaks with Black Box Differential Testing. In Proceedings of the 15th ACM Confer-
ence on Computer and Communications Security (Alexandria, Virginia, USA) (CCS
’08). ACM, New York, NY, USA, 279–288. https://doi.org/10.1145/1455770.1455806

[25] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. 1998. Side channel
cryptanalysis of product ciphers. In European Symposium on Research in Computer
Security. Springer, 97–110.

[26] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. CoRR abs/1801.01203
(2018). arXiv:1801.01203 http://arxiv.org/abs/1801.01203

[27] Paul C Kocher. 1996. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Annual International Cryptology Conference. Springer,
104–113.

[28] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis.
In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings. 388–
397. https://doi.org/10.1007/3-540-48405-1_25

[29] lcamtuf. [n.d.]. American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/
[30] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,

Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018. 973–990. https://www.usenix.org/conference/
usenixsecurity18/presentation/lipp

[31] Thomas S Messerges, Ezzy A Dabbish, and Robert H Sloan. 1999. Investigations
of Power Analysis Attacks on Smartcards. Smartcard 99 (1999), 151–161.

[32] Shirin Nilizadeh, Yannic Noller, and Corina S. Pasareanu. 2018. DifFuzz: Dif-
ferential Fuzzing for Side-Channel Analysis. CoRR abs/1811.07005 (2018).
arXiv:1811.07005 http://arxiv.org/abs/1811.07005

[33] Yannic Noller, Rody Kersten, and Corina S. Păsăreanu. 2018. Badger: Complexity
Analysis with Fuzzing and Symbolic Execution. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Amsterdam,
Netherlands) (ISSTA 2018). ACM, New York, NY, USA, 322–332. https://doi.org/
10.1145/3213846.3213868

[34] Emanuel Parzen. 1962. On Estimation of a Probability Density Function and
Mode. Ann. Math. Statist. 33, 3 (09 1962), 1065–1076. https://doi.org/10.1214/
aoms/1177704472

[35] PeachTech. [n.d.]. PeachFuzzer. http://www.peach.tech/
[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[37] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria, and
Tevfik Bultan. 2017. Synthesis of Adaptive Side-Channel Attacks. In 30th IEEE
Computer Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA,
August 21-25, 2017. 328–342. https://doi.org/10.1109/CSF.2017.8

[38] Quoc-Sang Phan, Pasquale Malacaria, Corina S. Pasareanu, and Marcelo
d’Amorim. 2014. Quantifying information leaks using reliability analysis. In
2014 International Symposium on Model Checking of Software, SPIN 2014, Pro-
ceedings, San Jose, CA, USA, July 21-23, 2014. 105–108. https://doi.org/10.1145/
2632362.2632367

[39] Quoc-Sang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Păsăreanu.
2012. Symbolic Quantitative Information Flow. SIGSOFT Softw. Eng. Notes 37, 6
(Nov. 2012), 1–5. https://doi.org/10.1145/2382756.2382791

[40] Nicolás Rosner, Ismet Burak Kadron, Lucas Bang, and Tevfik Bultan. 2019. Profit:
Detecting and Quantifying Side Channels in Networked Applications. In 26th
Network and Distributed System Security Symposium, NDSS 2019, San Diego, Cali-
fornia, USA, February 24-27, 2019.

[41] Mats Rudemo. 1982. Empirical choice of histograms and kernel density estimators.
Scandinavian Journal of Statistics (1982), 65–78.

[42] K Serebryany. 2015. libFuzzer, a library for coverage-guided fuzz testing. LLVM
project (2015).

[43] Claude E Shannon. 1948. A mathematical theory of communication. Bell system
technical journal 27, 3 (1948), 379–423.

[44] Bernard W. Silverman. 1986. Density Estimation for Statistics and Data Analysis.
Springer. https://doi.org/10.1007/978-1-4899-3324-9

[45] Dawn Xiaodong Song, David A. Wagner, and Xuqing Tian. 2001. Timing Analysis
of Keystrokes and Timing Attacks on SSH. In 10th USENIX Security Symposium,
August 13-17, 2001, Washington, D.C., USA. http://www.usenix.org/publications/
library/proceedings/sec01/song.html

[46] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In
NDSS, Vol. 16. 1–16.

[47] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic. 2018. Robust Smartphone
App Identification via Encrypted Network Traffic Analysis. IEEE Transactions
on Information Forensics and Security 13, 1 (Jan 2018), 63–78. https://doi.org/10.
1109/TIFS.2017.2737970

[48] Yuval Yarom and Katrina Falkner. 2014. FLUSH+ RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack.. In USENIX Security Symposium, Vol. 1.
22–25.

[49] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2019. Generating Software Tests. In Generating Software Tests. Saarland
University. https://www.fuzzingbook.org/ Retrieved 2019-01-14 00:29:35-08:00.

[50] Walter Zucchini, A Berzel, and O Nenadic. 2003. Applied smoothing techniques.
Part I: Kernel Density Estimation 15 (2003).

https://doi.org/10.1145/1455770.1455806
https://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01203
https://doi.org/10.1007/3-540-48405-1_25
http://lcamtuf.coredump.cx/afl/
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://arxiv.org/abs/1811.07005
http://arxiv.org/abs/1811.07005
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1145/3213846.3213868
https://doi.org/10.1214/aoms/1177704472
https://doi.org/10.1214/aoms/1177704472
http://www.peach.tech/
https://doi.org/10.1109/CSF.2017.8
https://doi.org/10.1145/2632362.2632367
https://doi.org/10.1145/2632362.2632367
https://doi.org/10.1145/2382756.2382791
https://doi.org/10.1007/978-1-4899-3324-9
http://www.usenix.org/publications/library/proceedings/sec01/song.html
http://www.usenix.org/publications/library/proceedings/sec01/song.html
https://doi.org/10.1109/TIFS.2017.2737970
https://doi.org/10.1109/TIFS.2017.2737970
https://www.fuzzingbook.org/

	Abstract
	1 Introduction
	2 Motivation and Overview
	3 Feedback-driven Side-Channel Analysis
	3.1 System Model
	3.2 AutoFeed Workflow
	3.3 Assigning Weights to Subsets of Mutators
	3.4 Leakage Quantification
	3.5 Stop Criterion

	4 Implementation
	5 Experimental Evaluation
	5.1 Example Functions
	5.2 STAC Systems
	5.3 Experimental Setup
	5.4 Experimental Results

	6 Related Work
	7 Conclusions
	References

